

Pergamon

0040-4039(94)E0118-H

Reaction of N-Acyl-α-methoxyamines with Organozinc Reagents. A Convenient Method for the Synthesis of Homoallylamines and β-Amino Esters.

Naoki Kise,* Hiroki Yamazaki, Toshirou Mabuchi, and Tatsuya Shono

Division of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-01, Japan

Abstract: The reaction of N-acyl- α -methoxyamines with allyl-, propargyl-, and benzylzine bromides and Reformatsky reagents proceeds in THF at room temperature. Homoallyl- and homopropargylamines and β -amino esters are synthesized in good yields.

Acid catalyzed alkylation of N-acyl- α -alkoxyamines with a variety of nucleophiles has extensively studied in our and other laboratories and well demonstrated to be an excellent alternative method to alkylation of imines (eq 1).¹⁻³ On the other hands, we have already reported that N-acyl- α -methoxyamines derived from primary

$$\begin{array}{ccc} \mathsf{R} & & \mathsf{Nu} & & \mathsf{R} & \mathsf{Nu} \\ & & & \mathsf{NR'COR}^* & & \mathsf{Lewis} \mathsf{Acid} & & \mathsf{NR'COR}^* \end{array}$$
(1)

amines (R'=H in eq 1) also react with enolate anions under basic conditions.⁴ We wish report here the alkylation of *N*-acyl- α -methoxyamines with organozinc reagents such as allyl-, propargyl-, and benzylzinc bromides and Reformatsky reagents without using any catalyst. This type of reaction provides a convenient method for the synthesis of homoallyl- and homopropargyl amines and β -amino esters.

N-Methoxycarbonyl- α -methoxyamines were prepared from methyl carbamates of primary amines⁵ or α -amino acids⁶ by anodic oxidation in methanol. The results of the alkylation of *N*-methoxycarbonyl- α -methoxyamines with allyl-, propargyl-, and benzylzinc bromides are summarized in Table 1. A bromide and a *N*-methoxycarbonyl- α -methoxyamine were added simultaneously (method A) or successively (method B) to a suspension of Zn powder in THF at room temperature. The corresponding methyl carbamates of homoallyl amines (runs 1~11), homopropargyl amines (runs 12 and 13), and homobenzyl amines (runs 14 and 15) were obtained in good or moderate yields. It is noted that *N*-methoxycarbonyl- α -methoxyamine which is a equivalent to highly enolaizable imine of phenylacetoaldehyde (R=PhCH₂) afforded the adduct in a high yield (run 8). Cyclic α -methoxy lactams also reacted with allylzinc bromide to give the corresponding allyl substituted lactams in good yields (eq 2).

The results of the reaction of N-methoxycarbonyl- α -methoxyamines with Reformatsky reagents formed from α -bromoacetates are shown in Table 2. Although prolonged reaction time was needed (12-24 hr), the corresponding methyl carbamates of β -amino esters were obtained in satisfactory yields. Other Reformatsky reagents derived from methyl α -bromo butyrate and γ -bromo crotonate reacted with N-methoxycarbonyl- α methoxyamines (eqs 3 and 4).

R ¹ OMe	Zn Zn	R1R2	
I + NHCO₂Me	R-Br — THF	► I NHCO2Me)
R ¹	R ²	Method ^a	Yield(%) ^b
н	Сн	B	83
Me	СН	Α	68
Me	СН2	В	90
Me	CH2	Α	89
Me	CH2	Α	66 ^C
Me	Ph CH2	Α	90 ^d
i-Pr	CH₂	В	98
PhCH ₂	CH₂	В	96
Ph	∕Сн₂	Α	79
Ph	CH2	в	90
TBDMSOCH ₂ CH ₂	∕сн₂	В	73
Me	CH ₂	A	80
Me	CH ₂	В	80
Me	PhCH₂	В	64
i-Pr	PhCH ₂	В	42
	R ¹ OMe + NHCO ₂ Me + H Me Me Me Me Me i-Pr PhCH ₂ Ph Ph Ph TBDMSOCH ₂ CH ₂ Me Me Me Me Me i-Pr	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table 1. Reaction of N-Methoxycarbonyl-α-methoxyamines with Allyl-, Propargyland Benzylzinc Bromides

a. Method A: To a suspension of Zn powder (0.375 g, 5 mmol) in THF (10 ml) was added a solution of R^2Br (4.4 mmol) and N-methoxycarbonyl- α -methoxyamine (2 mmol) in THF (5 ml) dropwise at room temperature. The mixture was stirred for 2 hr, and then quenched by 1N HCl. The product was isolated by distillation or column chromatography on silica gel. Method B: To a suspension of Zn powder (0.375 g, 5 mmol) in THF (10 ml) was added a solution of R^2Br (4.4 mmol) in THF (2.5 ml) dropwise at room temperature and the mixture was stirred for 1 hr. To the mixture was added a solution of N-methoxycarbonyl- α -methoxyamine (2 mmol) in THF (2.5 ml). After stirring for 2 hr, the product was isolated by the same way as method A. b. Isolated yields. c. Rearranged product i was obtained. d. Rearranged product ii was obtained (diastereomeric ratio = >9/1).

$\begin{array}{cccc} R^{1} & OMe & + & BrCH_{2}CO_{2}R^{3} & \xrightarrow{Zn} & R^{1} & CO_{2}R^{3} \\ & & NHCO_{2}Me & & THF & NHCO_{2}Me \end{array}$					
Run	R ¹	R ³	Methoda	Yield(%) b	
1	Me	Me	Α	85	
2	Me	t-Bu	В	45	
3	i- Pr	Me	Α	58	
4	i-Pr	t-Bu	В	65	
5	t-Bu	Me	Α	62	
6	PhCH ₂	t-Bu	В	53	
7	Ph	t-Bu	8	67	
8	TBDMSOCH ₂ CH ₂	t-Bu	в	80	

Table 2. Reaction of N-Methoxycarbonyl-a-methoxyamines with Reformatsky Reagents

a. See Table 1. b. Isolated yields.

The mechanism of this reaction is the elimination of methanol from N-methoxycarbonyl- α -methoxyamines followed by the addition of alkylzinc reagent to the resulting N-methoxycarbonylimine (Scheme 1). Consequently, two equivalents of alkylzinc reagents are necessary to complete the reaction.

The reactions of N-methoxycarbonyl- α -methoxyamine 1^{2a} prepared from L-threonine with allylzinc bromide and Reformatsky reagent gave *anti*-adducts preferentially (eqs 5 and 6).⁷ The *anti*-selectivity in these reactions can be explained by a non-chelation control⁹ in the addition of allylzinc reagent to N-methoxycarbonylimine. This result is contrast to the *syn*-selectivity in the TiCl4 catalyzed reaction of 1 with allylsilane (*syn/anti* = 4 : 1).^{2a}

References and Notes

- 1. For a review, see: Shono, T. Tetrahedron 1984, 40, 811.
- For recent reports, see: (a) Renaud, P.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1986, 25, 843. (b) Yamada, J.; Sato, H.; Yamamoto, Y. Tetrahedron Lett. 1989, 30, 5611. (c) Herborn, C.; Zietlow, A.; Steckhan, E.; Angew. Chem. Int. Ed. Engl. 1989, 29, 1399. (d) Shono, T.; Fujita, T.; Matsumura, Y. Chem. Lett., 1991, 81. (e) Wistrand, L.-G.; Skrinjar, M. Tetrahedron 1991, 47, 573.
- Recently, diastereoselective acid catalyzed alkylation of α-acetoxy lactams with chiral tin enolates has been reported: (a) Y. Nagao, W. Dai, M. Ochiai, S. Tsukaguchi, E. Fujita, J. Org. Chem., 1990, 55, 1148. (b) Y. Nagao, M. Ochiai, M. Shiro, *Tetrahedron*, 1990, 46, 6361, and references therein.
- (a) Shono, T.; Kise, N.; Sanda, F.; Ohi, S.; Tsubata, K. Tetrahedron Lett. 1988, 29, 231. (b) Shono, T.; Kise, N.; Sanda, F.; Ohi, S.; Yoshioka, K. Tetrahedron Lett. 1989, 30, 1253.
- 5. Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc. 1975, 97, 4264.
- 6. Horikawa, H.; Iwasaki, T.; Matsumoto, K.; Miyoshi, M. J. Org. Chem. 1978, 43, 335.
- 7. The diastereomeric ratio of 2 was determined by ¹H NMR spectra (200 MHz, CDCl₃). The chemical shifts (δ value) of methyl protons were as follows: *anti-2* 1.14; *syn-2* 1.13. The stereoconfiguration of 2 was confirmed by the transformation to cyclic carbamates 4 and their ¹H NMR analysis.⁸ The diastereomeric ratio of 3 and the assignment of the stereoconfiguration were based on the ¹H NMR analysis of lactone 5.

- 8. Cainelli, G.; Mezzina, E.; Panunzio, M. Tetrahedron. Lett. 1990, 31, 3481.
- For a review of the chelation and non-chelation controlled additions to α-alkoxycarbonyl compounds, see: Reetz, M. T. Angew. Chem. Int. Ed. Engl. 1984, 23, 556.

(Received in Japan 23 August 1993; accepted 21 October 1993)